461 research outputs found

    The Simultaneous Interpolation of Target Radar Cross Section in Both the Spatial and Frequency Domains by Means of Legendre Wavelets Model-Based Parameter Estimation

    Get PDF
    The understanding of the target radar cross section (RCS) is significant for target identification and for radar designing and optimization. In this paper, a numerical algorithm for calculating target RCS is presented which is based on Legendre wavelet model-based parameter estimation (LW-MBPE). The Padé rational function fitting model applied for MBPE in the frequency domain is enhanced to include spatial dependence on the numerator and denominator coefficients. This allows the function to interpolate target RCS in both the frequency and spatial domains simultaneously. The combination of Legendre wavelets guarantees the convergence of the algorithm. The method is convergent by increasing the sampling frequency and spatial points. Numerical results are provided to demonstrate the validity and applicability of the new technique

    The Simulation Analysis of Long-Span Membrane Structure

    Get PDF
    The analysis of wind load characteristics of gas-ribbed film structure plays an important role in the performance of the long-span membrane structure. This paper mainly researches on the long-span rib membrane structure. Surface wind pressure of the membrane structure is calculated by fluent, the distribution of force and surface pressure of the membrane structure under different angles and wind speeds is obtained. The worst working condition of the wind approach angle is 60°. Maximum force angle is positively correlated with windward angle and the length of structure.

    Personalized Estimate of Chemotherapy-Induced Nausea and Vomiting: Development and External Validation of a Nomogram in Cancer Patients Receiving Highly/Moderately Emetogenic Chemotherapy.

    Get PDF
    Chemotherapy-induced nausea and vomiting (CINV) is presented in over 30% of cancer patients receiving highly/moderately emetogenic chemotherapy (HEC/MEC). The currently recommended antiemetic therapy is merely based on the emetogenic level of chemotherapy, regardless of patient's individual risk factors. It is, therefore, critical to develop an approach for personalized management of CINV in the era of precision medicine.A number of variables were involved in the development of CINV. In the present study, we pooled the data from 2 multi-institutional investigations of CINV due to HEC/MEC treatment in Asian countries. Demographic and clinical variables of 881 patients were prospectively collected as defined previously, and 862 of them had full documentation of variables of interest. The data of 548 patients from Chinese institutions were used to identify variables associated with CINV using multivariate logistic regression model, and then construct a personalized prediction model of nomogram; while the remaining 314 patients out of China (Singapore, South Korea, and Taiwan) entered the external validation set. C-index was used to measure the discrimination ability of the model.The predictors in the final model included sex, age, alcohol consumption, history of vomiting pregnancy, history of motion sickness, body surface area, emetogenicity of chemotherapy, and antiemetic regimens. The C-index was 0.67 (95% CI, 0.62-0.72) for the training set and 0.65 (95% CI, 0.58-0.72) for the validation set. The C-index was higher than that of any single predictor, including the emetogenic level of chemotherapy according to current antiemetic guidelines. Calibration curves showed good agreement between prediction and actual occurrence of CINV.This easy-to-use prediction model was based on chemotherapeutic regimens as well as patient's individual risk factors. The prediction accuracy of CINV occurrence in this nomogram was well validated by an independent data set. It could facilitate the assessment of individual risk, and thus improve the personalized management of CINV

    Bufalin Induces Lung Cancer Cell Apoptosis via the Inhibition of PI3K/Akt Pathway

    Get PDF
    Bufalin is a class of toxic steroids which could induce the differentiation and apoptosis of leukemia cells, and induce the apoptosis of gastric, colon and breast cancer cells. However, the anti-tumor effects of bufalin have not been demonstrated in lung cancer. In this study we used A549 human lung adenocarcinoma epithelial cell line as the experimental model to evaluate the potential of bufalin in lung cancer chemotherapy. A549 cells were treated with bufalin, then the proliferation was detected by MTT assay and apoptosis was detected by flow cytometry analysis and Giemsa staining. In addition, A549 cells were treated by Akt inhibitor LY294002 in combination with bufalin and the activation of Akt and Caspase-3 as well as the expression levels of Bax, Bcl-2 and livin were examined by Western blot analysis. The results showed that Bufalin inhibited the proliferation of A549 cells and induced the apoptosis of A549 cells in a dose and time dependent manner. Mechanistically, we found that bufalin inhibited the activation of Akt. Moreover, bufalin synergized with Akt inhibitor to induce the apoptosis of A549 cells and this was associated with the upregulation of Bax expression, the downregulation of Bcl-2 and livin expression, and the activation of Caspase-3. In conclusion, our findings demonstrate that bufalin induces lung cancer cell apoptosis via the inhibition of PI3K/Akt pathway and suggest that bufalin is a potential regimen for combined chemotherapy to overcome the resistance of lung cancer cells to chemotherapeutics induced apoptosis

    Computation of Aerodynamic Noise Radiated from Ducted Tail Rotor Using Boundary Element Method

    Get PDF
    A detailed aerodynamic performance of a ducted tail rotor in hover has been numerically studied using CFD technique. The general governing equations of turbulent flow around ducted tail rotor are given and directly solved by using finite volume discretization and Runge-Kutta time integration. The calculations of the lift characteristics of the ducted tail rotor can be obtained. In order to predict the aerodynamic noise, a hybrid method combining computational aeroacoustic with boundary element method (BEM) has been proposed. The computational steps include the following: firstly, the unsteady flow around rotor is calculated using the CFD method to get the noise source information; secondly, the radiate sound pressure is calculated using the acoustic analogy Curle equation in the frequency domain; lastly, the scattering effect of the duct wall on the propagation of the sound wave is presented using an acoustic thin-body BEM. The aerodynamic results and the calculated sound pressure levels are compared with the known technique for validation. The sound pressure directivity and scattering effect are shown to demonstrate the validity and applicability of the method
    corecore